Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.543
Filtrar
1.
Arq Bras Oftalmol ; 87(2): e2022, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655938

RESUMO

PURPOSES: To determine the best protocol in obtaining the higher yield of conditioned culture medium to be used for the bone marrow mesenchymal stem cell differentiation into corneal epithelial cells, five techniques for the primary culture of human corneal epithelial cells were evaluated. METHODS: The studied culture techniques of corneal epithelial cells were: explants in culture flasks with and without hydrophilic surface treatment, on amniotic membrane, with enzymatic digestion, and by corneal scraping. The conditioned culture medium collected from these cultures was used to differentiate human bone marrow mesenchymal stem cells into corneal epithelial cells, which were characterized using flow cytometry with pan-cytokeratin and the corneal-specific markers, cytokeratin 3 and cytokeratin 12. RESULTS: The culture technique using flasks with hydrophilic surface treatment resulted in the highest yield of conditioned culture medium. Flasks without surface treatment resulted to a very low success rate. Enzymatic digestion and corneal scraping showed contamination with corneal fibroblasts. The culture on amniotic membranes only allowed the collection of culture medium during the 1st cell confluence. The effectiveness of cell differentiation was confirmed by cytometry analysis using the collected conditioned culture medium, as demonstrated by the expressions of cytokeratin 3 (95.3%), cytokeratin 12 (93.4%), and pan-cytokeratin (95.3%). CONCLUSION: The culture of corneal epithelial cell explants in flasks with hydrophilic surface treatment is the best technique for collecting a higher yield of conditioned culture medium to be used to differentiate mesenchymal stem cells.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Epitélio Corneano , Citometria de Fluxo , Células-Tronco Mesenquimais , Humanos , Meios de Cultivo Condicionados , Epitélio Corneano/citologia , Diferenciação Celular/fisiologia , Citometria de Fluxo/métodos , Células-Tronco Mesenquimais/citologia , Técnicas de Cultura de Células/métodos , Âmnio/citologia , Células Cultivadas , Queratina-3/metabolismo , Queratina-3/análise , Queratina-12/metabolismo , Reprodutibilidade dos Testes
2.
Sci Rep ; 12(1): 11432, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794158

RESUMO

Our previous study demonstrated hsa-miR-143-3p as one of the highly expressed miRNAs in enriched corneal epithelial stem cells (CESCs). Hence this study aims to elucidate the regulatory role of hsa-miR-143-3p in the maintenance of stemness in CESCs. The target genes of hsa-miR-143-3p were predicted and subjected to pathway analysis to select the targets for functional studies. Primary cultured limbal epithelial cells were transfected with hsa-miR-143-3p mimic, inhibitor or scrambled sequence using Lipofectamine 3000. The transfected cells were analysed for (i) colony forming potential, (ii) expression of stem cell (SC) markers/ transcription factors (ABCG2, NANOG, OCT4, KLF4, ΔNp63), (iii) differentiation marker (Cx43), (iv) predicted five targets of hsa-miR-143-3p (DVL3, MAPK1, MAPK14, KRAS and KAT6A), (v) MAPK signaling regulators and (vi) Wnt-ß-catenin signaling regulators by qPCR, immunofluorescence staining and/or Western blotting. High expression of hsa-miR-143-3p increased the colony forming potential (10.04 ± 1.35%, p < 0.001) with the ability to form holoclone-like colonies in comparison to control (3.33 ± 0.71%). The mimic treated cells had increased expression of SC markers but reduced expression of Cx43 and hsa-miR-143-3p targets involved in Wnt-ß-catenin and MAPK signaling pathways. The expression of ß-catenin, active ß-catenin and ERK2 in hsa-miR-143-3p inhibitor transfected cells were higher than the control cells and the localized nuclear expression indicated the activation of Wnt and MAPK signaling. Thus, the probable association of hsa-miR-143-3p in the maintenance of CESCs through inhibition of Wnt and MAPK signaling pathways was thus indicated.


Assuntos
Epitélio Corneano , Sistema de Sinalização das MAP Quinases , MicroRNAs , Células-Tronco , Via de Sinalização Wnt , beta Catenina , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio Corneano/citologia , Epitélio Corneano/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
3.
Int J Mol Sci ; 23(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35163646

RESUMO

Extracellular vesicles (EVs), specifically exosomes, carry a cell-type dependent cargo that is transported to the recipient cell and translated in the presence of a required machinery. Differences in the cargo carried by the corneal and conjunctival-derived EVs could be the agent that triggers the transdifferentiation of these two cell populations. Therefore, this study investigates the role of EVs in triggering the plasticity of corneal and conjunctival epithelial cells and identifies prospective miRNA and genes responsible for maintaining ocular surface homeostasis. The EVs were extracted from the conditioned media (after starving) of corneal epithelial (hTCEpi) and conjunctival (HCjE-Gi) cell lines using ultracentrifugation. HCjE-Gi cells were cultured with hTCEpi-derived EVs and vice-versa. The EVs were characterized as exosomes using Nanosight and Flow cytometry. KRT3 and KRT12 were used as associated corneal markers, whereas KRT7 and KRT13 were used as associated conjunctival markers with ΔNp63 as a differentiation marker. Shift of these markers was an indication of transdifferentiation. The cargo of the extracted exosomes from both the cell types was explored using next-generation sequencing. The hTCEpi-derived EVs induced conjunctival epithelial cells to express the corneal-associated markers KRT3 and KRT12, losing their conjunctival phenotype at both the mRNA and protein level. Simultaneously, HCjE-Gi-derived EVs induced corneal epithelial cells to express the conjunctival associated markers KRT7 and KRT13, losing their corneal phenotype. This process of differentiation was accompanied by an intermediate step of cell de-differentiation showed by up-regulation in the expression of epithelial stem cell marker ΔNp63, also shown on the ex vivo human cadaveric donor corneas. miRNA molecules (total of 11 including precursor and mature) with significant differences in their relative abundance between the two populations (p < 0.05) were found and investigated. miR-9-5p expression was higher in HCjE-Gi cells and HCjE-Gi-derived EVs when compared to hTCEpi cells and hTCEPi-derived EVs (p < 0.001). The results suggest that EVs released by the two cell types have the ability to influence the transdifferentiation of human conjunctival and corneal epithelial cells. miR-9-5p could have a role in stem cell homeostasis and cell differentiation via HES-1 gene.


Assuntos
Células Epiteliais/metabolismo , Epitélio Corneano/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Células-Tronco/metabolismo , Diferenciação Celular , Linhagem Celular , Células Epiteliais/citologia , Epitélio Corneano/citologia , Humanos , Células-Tronco/citologia
4.
Invest Ophthalmol Vis Sci ; 63(2): 31, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35212722

RESUMO

Purpose: To determine the role of transmembrane mucins in blocking fluorescein ingress to the corneal epithelium and its deficiency in contributing to corneal fluorescein punctate staining. Methods: A dry eye model was established by extirpating lacrimal and Harderian glands in rabbits to correlate the expression of mucins with fluorescein-stained areas on the corneal button using immunofluorescence. Expression of transmembrane mucins was promoted in human corneal epithelial cells (HCECs) by culturing with the mucin-promoting medium (MPM) or diquafosol treatment. Conversely, the expression of mucins was downregulated by knockdown with short hairpin RNA. The role of mucin1 extracellular domain in fluorescein ingress was further verified by overexpression of N-terminally truncated mucin1 in HCECs. Results: In the rabbit dry eye model, the expression level of mucin1 was significantly decreased in superficial corneal epithelial cells where fluorescein punctate staining was observed. Upregulation of mucin1 and mucin16 in HCECs promoted by MPM or by diquafosol treatment impeded intracellular fluorescein ingress. Downregulation of mucin1 and mucin16 enhanced fluorescence ingress in HCECs after fluorescein staining. Overexpression of truncated mucin1 did not alter the fluorescein intensity of fluorescein-stained HCECs, supporting the notion that the ability of mucin1 to block fluorescein ingress was primarily mediated by its extracellular domain. Minimal inherent expression of mucin16 in the rabbit cornea limited the validation of its role in blocking fluorescein ingress in vivo. Conclusion: Transmembrane mucin1 blocks fluorescein ingress in the corneal epithelium, explaining how fluorescein staining is positive when the level of transmembrane mucins is disturbed in dry eyes.


Assuntos
Síndromes do Olho Seco/metabolismo , Fluoresceína/metabolismo , Corantes Fluorescentes/metabolismo , Mucina-1/fisiologia , Animais , Transporte Biológico/fisiologia , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Epitélio Corneano/citologia , Epitélio Corneano/metabolismo , Citometria de Fluxo , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , RNA Interferente Pequeno/genética , Coelhos , Reação em Cadeia da Polimerase em Tempo Real
5.
PLoS One ; 17(1): e0262223, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34986189

RESUMO

Contact lens usage has contributed to increased incidence rates of Acanthamoeba keratitis (AK), a serious corneal infection that can lead to blindness. Since symptoms associated with AK closely resemble those incurred by bacterial or fungal keratitis, developing a diagnostic method enabling rapid detection with a high degree of Acanthamoeba-specificity would be beneficial. Here, we produced a polyclonal antibody targeting the carboxylesterase (CE) superfamily protein secreted by the pathogenic Acanthamoeba and evaluated its diagnostic potential. Western blot analysis revealed that the CE antibody specifically interacts with the cell lysates and conditioned media of pathogenic Acanthamoeba, which were not observed from the cell lysates and conditioned media of human corneal epithelial (HCE) cells, Fusarium solani, Staphylococcus aureus, and Pseudomonas aeruginosa. High titers of A. castellanii-specific antibody production were confirmed sera of immunized mice via ELISA, and these antibodies were capable of detecting A. castellanii from the cell lysates and their conditioned media. The specificity of the CE antibody was further confirmed on A. castellanii trophozoites and cysts co-cultured with HCE cells, F. solani, S. aureus, and P. aeruginosa using immunocytochemistry. Additionally, the CE antibody produced in this study successfully interacted with 7 different Acanthamoeba species. Our findings demonstrate that the polyclonal CE antibody specifically detects multiple species belong to the genus Acanthamoeba, thus highlighting its potential as AK diagnostic tool.


Assuntos
Ceratite por Acanthamoeba/diagnóstico , Acanthamoeba/imunologia , Anticorpos Antiprotozoários/análise , Carboxilesterase/imunologia , Meios de Cultivo Condicionados/metabolismo , Epitélio Corneano/citologia , Acanthamoeba/classificação , Acanthamoeba/crescimento & desenvolvimento , Acanthamoeba/isolamento & purificação , Animais , Anticorpos Antiprotozoários/sangue , Especificidade de Anticorpos , Carboxilesterase/administração & dosagem , Carboxilesterase/genética , Linhagem Celular , Células Cultivadas , Lentes de Contato/parasitologia , Diagnóstico Precoce , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/parasitologia , Epitélio Corneano/metabolismo , Epitélio Corneano/parasitologia , Humanos , Imunização , Masculino , Camundongos , Proteínas de Protozoários/administração & dosagem , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia
6.
Exp Eye Res ; 214: 108878, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871567

RESUMO

Human corneal epithelial cells are needed to study corneal pathophysiology in vitro. Due to the limitations of cell lines, the use of primary cells is highly desirable, but the scarcity of human tissues, along with ethical issues, make it difficult to accomplish all required experiments. In advanced surface ablation (ASA), the central corneal epithelium is removed and discarded. We hypothesized that ASA samples could be used to perform in vitro assays. In this study, 29 samples from patients undergoing ASA were recovered in supplemented DMEM/F12 culture medium, RIPA buffer, or RLT lysis buffer. The first aim was to determine whether cells could be maintained in culture. Although with the explant technique, tissue pieces did not attach to the culture surface, after disaggregation, cells showed high viability (90.0 ± 6.0%), attached to plates, and remained viable for up to 14 days. The second aim was to elucidate if ASA samples could be used to study protein or gene expression. Cytokeratin-3, ZO-1, Ki67, and E-cadherin protein expression were confirmed by immunofluorescence. Total protein (485.8 ± 115.8 µg) was isolated from cells in RIPA buffer, and GAPDH was detected by Western blotting, indicating that samples are adequate for protein studies. RNA (9.0 ± 3.6 µg) was isolated from samples in RLT lysis buffer, and GAPDH gene expression was studied by PCR, confirming that samples were also suitable for gene expression studies. These results suggest that samples obtained from corneal surface ablation procedures may constitute a valuable source of human cells to accomplish in vitro studies.


Assuntos
Cirurgia da Córnea a Laser , Epitélio Corneano/citologia , Adulto , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Western Blotting , Caderinas/metabolismo , Contagem de Células , Técnicas de Cultura de Células , Sobrevivência Celular , Eletroforese em Gel de Poliacrilamida , Epitélio Corneano/metabolismo , Proteínas do Olho/metabolismo , Feminino , Humanos , Queratina-3/metabolismo , Antígeno Ki-67/metabolismo , Masculino , Microscopia de Fluorescência , Retalhos Cirúrgicos , Proteína da Zônula de Oclusão-1/metabolismo
7.
Cornea ; 41(1): 69-77, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33928920

RESUMO

PURPOSE: To assess the efficacy and safety of human leukocyte antigen-matched allogeneic cultivated limbal epithelial stem cell grafts in the treatment of aniridia-associated keratopathy (AAK). METHODS: Six eyes of 6 patients with severe AAK received an allogeneic stem cell graft between January 2010 and March 2017. Anatomical and functional results were assessed at 6 months, 1 year, 2 years, and the final follow-up visit available. Safety analysis was performed by considering all perioperative and postoperative adverse events and additional surgeries required during the follow-up period. RESULTS: The mean follow-up was 53.6 months (range 24-104 months). In most patients (80%), there was an early improvement of the keratopathy postoperatively, which slowly regressed during longer follow-up. At the final follow-up, 4 of the eyes were graded as failure and 1 eye was graded as partial success. Grading the sixth eye was not possible because of an adverse event. None of the patients maintained a total anatomical success in the long-term. Only 1 patient maintained a modest improvement in best-corrected visual acuity from hand motion to counting fingers. Four serious adverse events were recorded in 2 patients. CONCLUSIONS: Severe AAK remains a challenging condition to manage. Transplantation of allogenic ex vivo cultivated limbal stem cells may provide a temporary improvement in ocular surface stability, but anatomical and functional results are poor in the long-term. The eyes are prone to adverse events, and any surgical treatment should take this into consideration.


Assuntos
Aniridia/complicações , Doenças da Córnea/cirurgia , Epitélio Corneano/citologia , Antígenos HLA/imunologia , Limbo da Córnea/citologia , Transplante de Células-Tronco/métodos , Células-Tronco/imunologia , Adulto , Idoso , Células Cultivadas , Doenças da Córnea/diagnóstico , Doenças da Córnea/etiologia , Epitélio Corneano/imunologia , Feminino , Seguimentos , Sobrevivência de Enxerto , Humanos , Limbo da Córnea/imunologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Células-Tronco/citologia , Fatores de Tempo , Transplante Autólogo , Acuidade Visual , Adulto Jovem
8.
Curr Issues Mol Biol ; 43(3): 2124-2134, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34940121

RESUMO

Corneal epithelium maintains visual acuity and is regenerated by the proliferation and differentiation of limbal progenitor cells. Transplantation of human limbal progenitor cells could restore the integrity and functionality of the corneal surface in patients with limbal stem cell deficiency. However, multiple protocols are employed to differentiate human induced pluripotent stem (iPS) cells into corneal epithelium or limbal progenitor cells. The aim of this study was to optimize a protocol that uses bone morphogenetic protein 4 (BMP4) and limbal cell-specific medium. Human dermal fibroblast-derived iPS cells were differentiated into limbal progenitor cells using limbal cell-specific (PI) medium and varying doses (1, 10, and 50 ng/mL) and durations (1, 3, and 10 days) of BMP4 treatment. Differentiated human iPS cells were analyzed by real-time polymerase chain reaction (RT-PCR), Western blotting, and immunocytochemical studies at 2 or 4 weeks after BMP4 treatment. Culturing human dermal fibroblast-derived iPS cells in limbal cell-specific medium and BMP4 gave rise to limbal progenitor and corneal epithelial-like cells. The optimal protocol of 10 ng/mL and three days of BMP4 treatment elicited significantly higher limbal progenitor marker (ABCG2, ∆Np63α) expression and less corneal epithelial cell marker (CK3, CK12) expression than the other combinations of BMP4 dose and duration. In conclusion, this study identified a successful reprogramming strategy to induce limbal progenitor cells from human iPS cells using limbal cell-specific medium and BMP4. Additionally, our experiments indicate that the optimal BMP4 dose and duration favor limbal progenitor cell differentiation over corneal epithelial cells and maintain the phenotype of limbal stem cells. These findings contribute to the development of therapies for limbal stem cell deficiency disorders.


Assuntos
Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Epitélio Corneano/citologia , Epitélio Corneano/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Biomarcadores , Linhagem Celular , Linhagem da Célula/genética , Células Cultivadas , Humanos
9.
J Mater Chem B ; 9(45): 9347-9357, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34724021

RESUMO

Amniotic membrane (AM) transplantation is often used as a treatment for corneal repair, but AM is prone to dissolving and shedding after surgery; multiple transplants will cause pain and financial burden. In this work, human amniotic membrane was firstly decellularized to obtain an AM extracellular matrix (dAM). This dAM was homogenized and extracted to obtain the dAM extract (simplified as dAME). Different forms of administration for corneal injury were performed as liquid drops (diluted dAME), in situ gels (using temperature-dependent Poloxamer 407 as the matrix), and tablets (poly(vinyl alcohol) as the matrix). The cytocompatibility of dAME was evaluated using corneal epithelial cells, corneal stromal cells and fibroblasts as cell models. The results showed that dAME is biocompatible to all these cells. Cells exhibited normal morphology and growth state at a dAME concentration of up to 160 µg mL-1. In vivo, dAME exhibited increased wound healing efficiency in severe corneal injury, being characterized with a shorter healing time for epithelium and a faster recovery for stromal opacity and thickness, compared with those of the control eyes. Different forms of administration have different effects on corneal repair; among them, in situ gels achieved the best therapeutic efficiency. Their biological mechanism was detected via quantitative real-time polymerase chain reaction (qRT-PCR) technology. It was confirmed that dAME plays important roles in promoting the mRNA expression of leucine-rich and immunoglobulin-like domains 1 (LRIG1) and in inhibiting the mRNA of transforming growth factor-ß1 (TGF-ß1).


Assuntos
Âmnio , Lesões da Córnea/terapia , Epitélio Corneano/citologia , Extratos de Tecidos/uso terapêutico , Animais , Sobrevivência Celular , Células Cultivadas , Esquema de Medicação , Fibroblastos , Humanos , Coelhos , Células Estromais
10.
EBioMedicine ; 73: 103654, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34740104

RESUMO

BACKGROUND: Age-related changes affecting the ocular surface cause vision loss in the elderly. Cisd2 deficiency drives premature aging in mice as well as resulting in various ocular surface abnormalities. Here we investigate the role of CISD2 in corneal health and disease. METHODS: We studied the molecular mechanism underlying the ocular phenotypes brought about by Cisd2 deficiency using both Cisd2 knockout (KO) mice and a human corneal epithelial cell (HCEC) cell line carrying a CRISPR-mediated CISD2KO background. We also develop a potential therapeutic strategy that targets the Ca2+ signaling pathway, which has been found to be dysregulated in the corneal epithelium of subjects with ocular surface disease in order to extend the mechanistic findings into a translational application. FINDINGS: Firstly, in patients with corneal epithelial disease, CISD2 is down-regulated in their corneal epithelial cells. Secondly, using mouse cornea, Cisd2 deficiency causes a cycle of chronic injury and persistent repair resulting in exhaustion of the limbal progenitor cells. Thirdly, in human corneal epithelial cells, CISD2 deficiency disrupts intracellular Ca2+ homeostasis, impairing mitochondrial function, thereby retarding corneal repair. Fourthly, cyclosporine A and EDTA facilitate corneal epithelial wound healing in Cisd2 knockout mice. Finally, cyclosporine A treatment restores corneal epithelial erosion in patients with dry eye disease, which affects the ocular surface. INTERPRETATION: These findings reveal that Cisd2 plays an essential role in the cornea and that Ca2+ signaling pathways are potential targets for developing therapeutics of corneal epithelial diseases. FUNDING: This study was supported by the Ministry of Science and Technology (MOST) and Chang Gung Medical Research Foundation, Taiwan.


Assuntos
Epitélio Corneano/fisiologia , Proteínas de Membrana/genética , Regeneração , Animais , Biomarcadores , Cálcio/metabolismo , Linhagem Celular , Biologia Computacional/métodos , Ciclosporina/farmacologia , Células Epiteliais/metabolismo , Epitélio Corneano/citologia , Feminino , Perfilação da Expressão Gênica , Homeostase , Humanos , Leucócitos/imunologia , Leucócitos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Imagem Molecular , Oxigênio/metabolismo , Regeneração/efeitos dos fármacos , Regeneração/genética , Cicatrização/efeitos dos fármacos
11.
Sci Rep ; 11(1): 21727, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741068

RESUMO

The cornea is the clear window that lets light into the eye. It is composed of five layers: epithelium, Bowman's layer, stroma, Descemet's membrane and endothelium. The maintenance of its structure and transparency are determined by the functions of the different cell types populating each layer. Attempts to regenerate corneal tissue and understand disease conditions requires knowledge of how cell profiles vary across this heterogeneous tissue. We performed a single cell transcriptomic profiling of 19,472 cells isolated from eight healthy donor corneas. Our analysis delineates the heterogeneity of the corneal layers by identifying cell populations and revealing cell states that contribute in preserving corneal homeostasis. We identified expression of CAV1, HOMER3 and CPVL in the corneal epithelial limbal stem cell niche, CKS2, STMN1 and UBE2C were exclusively expressed in highly proliferative transit amplifying cells, CXCL14 was expressed exclusively in the suprabasal/superficial limbus, and NNMT was exclusively expressed by stromal keratocytes. Overall, this research provides a basis to improve current primary cell expansion protocols, for future profiling of corneal disease states, to help guide pluripotent stem cells into different corneal lineages, and to understand how engineered substrates affect corneal cells to improve regenerative therapies.


Assuntos
Substância Própria/metabolismo , Limbo da Córnea/metabolismo , Transcriptoma , Idoso , Biomarcadores/metabolismo , Endotélio Corneano/citologia , Epitélio Corneano/citologia , Feminino , Humanos , Limbo da Córnea/citologia , Masculino , Pessoa de Meia-Idade , Análise de Célula Única , Nicho de Células-Tronco , Adulto Jovem
12.
Int J Mol Sci ; 22(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34769405

RESUMO

Limbal epithelial stem/progenitor cells (LSCs) reside in a niche that contains finely tuned balances of various signaling pathways including Wnt, Notch, BMP, Shh, YAP, and TGFß. The activation or inhibition of these pathways is frequently dependent on the interactions of LSCs with various niche cell types and extracellular substrates. In addition to receiving molecular signals from growth factors, cytokines, and other soluble molecules, LSCs also respond to their surrounding physical structure via mechanotransduction, interaction with the ECM, and interactions with other cell types. Damage to LSCs or their niche leads to limbal stem cell deficiency (LSCD). The field of LSCD treatment would greatly benefit from an understanding of the molecular regulation of LSCs in vitro and in vivo. This review synthesizes current literature around the niche factors and signaling pathways that influence LSC function. Future development of LSCD therapies should consider all these niche factors to achieve improved long-term restoration of the LSC population.


Assuntos
Epitélio Corneano/metabolismo , Olho/fisiopatologia , Limbo da Córnea/metabolismo , Nicho de Células-Tronco/fisiologia , Células-Tronco/metabolismo , Animais , Epitélio Corneano/citologia , Olho/metabolismo , Humanos , Limbo da Córnea/citologia , Mecanotransdução Celular/fisiologia , Células-Tronco/citologia
13.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34830308

RESUMO

In order to reduce the need for donor corneas, understanding of corneal wound healing and development of an entirely tissue-engineered human cornea (hTECs) is of prime importance. In this study, we exploited the hTEC to determine how deep wound healing affects the transcriptional pattern of corneal epithelial cells through microarray analyses. We demonstrated that the gene encoding clusterin (CLU) has its expression dramatically repressed during closure of hTEC wounds. Western blot analyses confirmed a strong reduction in the expression of the clusterin isoforms after corneal damage and suggest that repression of CLU gene expression might be a prerequisite to hTEC wound closure. Transfection with segments from the human CLU gene promoter revealed the presence of three regulatory regions: a basal promoter and two more distal negative regulatory regions. The basal promoter bears DNA binding sites for very potent transcription factors (TFs): Activator Protein-1 (AP-1) and Specificity protein-1 and 3 (Sp1/Sp3). By exploiting electrophoretic mobility shift assays (EMSA), we demonstrated that AP-1 and Sp1/Sp3 have their DNA binding site overlapping with one another in the basal promoter of the CLU gene in hCECs. Interestingly, expression of both these TFs is reduced (at the protein level) during hTEC wound healing, thereby contributing to the extinction of CLU gene expression during that process. The results of this study contribute to a better understanding of the molecular mechanisms accounting for the repression of CLU gene expression during corneal wound healing.


Assuntos
Clusterina/genética , Células Epiteliais/metabolismo , Epitélio Corneano/citologia , Expressão Gênica , Transdução de Sinais/genética , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp3/metabolismo , Engenharia Tecidual/métodos , Fator de Transcrição AP-1/metabolismo , Cicatrização/genética , Adulto , Idoso , Células Cultivadas , Criança , Clusterina/metabolismo , Epitélio Corneano/metabolismo , Fibroblastos/metabolismo , Humanos , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Doadores de Tecidos , Transfecção
14.
Molecules ; 26(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34833901

RESUMO

A recombinant formulation of silk fibroin containing the arginine-glycine-aspartic acid (RGD) cell-binding motif (RGD-fibroin) offers potential advantages for the cultivation of corneal cells. Thus, we investigated the growth of corneal stromal cells and epithelial cells on surfaces created from RGD-fibroin, in comparison to the naturally occurring Bombyx mori silk fibroin. The attachment of cells was compared in the presence or absence of serum over a 90 min period and analyzed by quantification of dsDNA content. Stratification of epithelial cells on freestanding membranes was examined by confocal fluorescence microscopy and optimized through use of low molecular weight poly(ethylene glycol) (PEG; 300 Da) as a porogen, the enzyme horseradish peroxidase (HRP) as a crosslinking agent, and stromal cells grown on the opposing membrane surface. The RGD-fibroin reduced the tendency of stromal cell cultures to form clumps and encouraged the stratification of epithelial cells. PEG used in conjunction with HRP supported the fabrication of more permeable freestanding RGD-fibroin membranes, that provide an effective scaffold for stromal-epithelial co-cultures. Our studies encourage the use of RGD-fibroin for corneal cell culture. Further studies are required to confirm if the benefits of this formulation are due to changes in the expression of integrins, components of the extracellular matrix, or other events at the transcriptional level.


Assuntos
Córnea/citologia , Fibroínas/química , Tecidos Suporte/química , Animais , Fenômenos Biomecânicos , Bombyx/química , Bombyx/genética , Adesão Celular , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Substância Própria/citologia , Epitélio Corneano/citologia , Fibroínas/genética , Humanos , Limbo da Córnea/citologia , Membranas Artificiais , Microscopia Confocal , Oligopeptídeos/química , Oligopeptídeos/genética , Permeabilidade , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Engenharia Tecidual
15.
Sci Rep ; 11(1): 19956, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620960

RESUMO

Limbal stem cells deficiency (LSCD) is an eye disease caused by the loss of stem cells in the corneal limbus as a succession of an injury due physical, biological, or chemical agents. Current therapies of LSCD are focused on the transplantation of donor corneas or tissue equivalents produced from autologous limbal stem cells. Every year there are waiting millions of patients for the cornea transplantation all over the world and the list is growing due to the relatively low number of cornea donors. On the other hand, the transplantation of tissue or cells into the recipient's body is associated with the higher risk of possible side effects. The possibility of the application of an indirect treatment using the properties of the paracrine activity of stem cells, would be beneficial for the patients with transplant failures. This study was to evaluate the paracrine effect of mesenchymal stem cells derived from adipose tissue (ADSC) on the viability of limbal epithelial stem cells (LESC). The paracrine effect was assessed by treating LESC with conditioned medium collected from ADSC culture. Cell viability, cytotoxicity, apoptosis and proliferation were evaluated using in vitro assays in standard conditions and induced inflammation. After the exposure to the examined conditions, the expression of genes related to pro- and anti- inflammatory factors was evaluated and compared to the secretion of selected cytokines by ELISA test. Moreover, the changes in LESC phenotype were assessed using of phenotype microarrays. Our findings suggest that paracrine activity of ADSC on LESC promotes its proliferation and has a potential role in mitigation of the adverse impact of inflammation induced by lipopolysaccharide.


Assuntos
Tecido Adiposo/citologia , Meios de Cultivo Condicionados/farmacologia , Limbo da Córnea/citologia , Células-Tronco/citologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Epitélio Corneano/citologia , Perfilação da Expressão Gênica , Humanos , Inflamação , Limbo da Córnea/efeitos dos fármacos , Limbo da Córnea/crescimento & desenvolvimento , Limbo da Córnea/metabolismo , Lipopolissacarídeos/farmacologia
16.
Exp Eye Res ; 212: 108767, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34534542

RESUMO

Limbal stem cells (LSCs) are the stem cell reservoir for corneal epithelium. The protocol to isolate LSCs from human cornea has been examined and optimized. However, the isolation protocol has not been optimized for mouse cornea, which is crucial for the downstream cell analysis. Here we compared four different isolation methods evolved from the previous reports to obtain mouse limbal epithelial cells which are heterogeneous and contain LSCs in a single-cell suspension: (1) the dissected limbal rim was cut into pieces and digested by 10-cycle incubation in trypsin; (2) after the removal of corneal epithelium by a rotating bur, the remaining eyeball was incubated in dispase at 4 °C for overnight to obtain limbal epithelial sheet, followed by trypsin digestion into a single-cell suspension; (3) same as method 2 except that the incubation was in dispase at 37 °C for 2h and an additional collagenase incubation at 37 °C for 20 min; (4) same as method 3 except that the corneal epithelium was punctured by a 1.5 mm trephine instead of being removed by a rotating bur. Method 1 showed the lowest cell yield, the lowest percentage of single cells, and the lowest number of limbal epithelial stem/progenitor cells in the harvested cells among the four methods, thus not a recommended protocol. Method 2, 3, and 4 isolated a comparable number of K14+ and p63α-bright stem/progenitor cells per eye. The remaining eye globe after cell collection in the three methods showed a complete removal of limbal epithelium albeit different extent of corneal and limbal stromal digestion. Among the three methods, method 2 showed a higher cell viability than method 4; method 3 yielded the lowest cell number; method 4 led to the highest percentage of single cells in cell suspension. Results suggest that method 2, 3, and 4 are preferred methods to isolate heterogeneous-LSCs from mouse corneas.


Assuntos
Epitélio Corneano/citologia , Limbo da Córnea/citologia , Células-Tronco/citologia , Animais , Contagem de Células , Separação Celular , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais
17.
Invest Ophthalmol Vis Sci ; 62(10): 22, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34415987

RESUMO

Purpose: Endogenous and exogenous stressors, including nutritional challenges, may alter circadian rhythms in the cornea. This study aimed to determine the effects of high fructose intake (HFI) on circadian homeostasis in murine cornea. Methods: Corneas of male C57BL/6J mice subjected to 10 days of HFI (15% fructose in drinking water) were collected at 3-hour intervals over a 24-hour circadian cycle. Total extracted RNA was subjected to high-throughput RNA sequencing. Rhythmic transcriptional data were analyzed to determine the phase, rhythmicity, unique signature, metabolic pathways, and cell signaling pathways of transcripts with temporally coordinated expression. Corneas of HFI mice were collected for whole-mounted techniques after immunofluorescent staining to quantify mitotic cell number in the epithelium and trafficking of neutrophils and γδ-T cells to the limbal region over a circadian cycle. Results: HFI significantly reprogrammed the circadian transcriptomic profiles of the normal cornea and reorganized unique temporal and clustering enrichment pathways, but did not affect core-clock machinery. HFI altered the distribution pattern and number of corneal epithelial mitotic cells and enhanced recruitment of neutrophils and γδ-T cell immune cells to the limbus across a circadian cycle. Cell cycle, immune function, metabolic processes, and neuronal-related transcription and associated pathways were altered in the corneas of HFI mice. Conclusions: HFI significantly reprograms diurnal oscillations in the cornea based on temporal and spatial distributions of epithelial mitosis, immune cell trafficking, and cell signaling pathways. Our findings reveal novel molecular targets for treating pathologic alterations in the cornea after HFI.


Assuntos
Ritmo Circadiano/genética , Epitélio Corneano/efeitos dos fármacos , Proteínas do Olho/genética , Frutose/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , RNA/genética , Administração Oral , Animais , Divisão Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Epitélio Corneano/citologia , Proteínas do Olho/biossíntese , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , RNA/metabolismo , Edulcorantes/administração & dosagem , Transcriptoma
18.
Sci Rep ; 11(1): 16323, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381080

RESUMO

Bulk RNA sequencing of a tissue captures the gene expression profile from all cell types combined. Single-cell RNA sequencing identifies discrete cell-signatures based on transcriptomic identities. Six adult human corneas were processed for single-cell RNAseq and 16 cell clusters were bioinformatically identified. Based on their transcriptomic signatures and RNAscope results using representative cluster marker genes on human cornea cross-sections, these clusters were confirmed to be stromal keratocytes, endothelium, several subtypes of corneal epithelium, conjunctival epithelium, and supportive cells in the limbal stem cell niche. The complexity of the epithelial cell layer was captured by eight distinct corneal clusters and three conjunctival clusters. These were further characterized by enriched biological pathways and molecular characteristics which revealed novel groupings related to development, function, and location within the epithelial layer. Moreover, epithelial subtypes were found to reflect their initial generation in the limbal region, differentiation, and migration through to mature epithelial cells. The single-cell map of the human cornea deepens the knowledge of the cellular subsets of the cornea on a whole genome transcriptional level. This information can be applied to better understand normal corneal biology, serve as a reference to understand corneal disease pathology, and provide potential insights into therapeutic approaches.


Assuntos
Córnea/citologia , Adulto , Diferenciação Celular/fisiologia , Túnica Conjuntiva/citologia , Córnea/patologia , Doenças da Córnea/patologia , Células Epiteliais/citologia , Epitélio Corneano/citologia , Humanos , Limbo da Córnea/citologia , Análise de Sequência de RNA/métodos , Nicho de Células-Tronco/fisiologia , Células-Tronco/citologia , Transcriptoma/fisiologia
19.
Exp Eye Res ; 211: 108720, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34389315

RESUMO

The transplantation of expansions of limbal epithelial stem cells (LESC) remains one of the most efficient therapies for the treatment of limbal stem cell deficiency (LSCD) to date. However, the available donor corneas are scarce, and the corneas conserved for long time, under hypothermic conditions (after 7 days) or in culture (more than 28 days), are usually discarded due to poor viability of the endothelial cells. To establish an objective criterion for the utilisation or discarding of corneas as a source of LESC, we characterized, by immunohistochemistry analysis, donor corneas conserved in different conditions and for different periods of time. We also studied the potency of LESCs isolated from these corneas and maintained in culture up to 3 cell passages. We hoped that the study of markers of LESCs present in both the corneoscleral histological sections and the cell cultures would show the adequacy of the methods used for cell isolation and how fit the LESC enrichment of the obtained cell populations to be expanded was. Thus, the expressions of markers of the cells residing in the human limbal and corneal epithelium (cytokeratin CK15 and CK12, vimentin, Collagen VII, p63α, ABCG2, Ki67, Integrin ß4, ZO1, and melan A) were analysed in sections of corneoscleral tissues conserved in hypothermic conditions for 2-9 days with post-mortem time (pmt) < 8 h or for 1 day with pmt > 16 h, and in sclerocorneal rims maintained in an organ culture medium for 29 days. Cell populations isolated from donor corneoscleral tissues were also assessed based on these markers to verify the adequacy of isolation methods and the potential of expanding LESCs from these tissues. Positivity for several putative stem cell markers such as CK15 and p63α was detected in all corneoscleral tissues, although a decrease was recorded in the ones conserved for longer times. The barrier function and the ability to adhere to the extracellular matrix were maintained in all the analysed tissues. In limbal epithelial cell cultures, a simultaneous decrease in the melan A melanocyte marker and the putative stem cell markers was detected, suggesting a close relationship between the melanocytes and the limbal stem cells of the niche. Holoclones stained with putative stem cell markers were obtained from long-term, hypothermic, stored sclerocorneal rims. The results showed that the remaining sclerocorneal rims after corneal transplantation, which were conserved under hypothermic conditions for up to 7 days and would have been discarded at a first glance, still maintained their potential as a source of LESC cultures.


Assuntos
Córnea/citologia , Epitélio Corneano/citologia , Limbo da Córnea/citologia , Técnicas de Cultura de Órgãos/métodos , Células-Tronco/citologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Separação Celular , Células Cultivadas , Colágeno/metabolismo , Córnea/metabolismo , Epitélio Corneano/metabolismo , Humanos , Queratinas/metabolismo , Limbo da Córnea/metabolismo , Pessoa de Meia-Idade , Células-Tronco/metabolismo , Fatores de Tempo , Doadores de Tecidos , Preservação de Tecido/métodos , Vimentina/metabolismo
20.
Int J Mol Sci ; 22(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205905

RESUMO

Human oral mucosa stem cells (hOMSCs) arise from the neural crest, they can self-renew, proliferate, and differentiate to several cell lines and could represent a good source for application in tissue engineering. Because of their anatomical location, hOMSCs are easy to isolate, have multilineage differentiation capacity and express embryonic stem cells markers such as-Sox2, Oct3/4 and Nanog. We have used SHEM (supplemented hormonal epithelial medium) media and cultured hOMSCs over human amniotic membrane and determined the cell's capacity to differentiate to an epithelial-like phenotype and to express corneal specific epithelial markers-CK3, CK12, CK19, Pan-cadherin and E-cadherin. Our results showed that hOMSCs possess the capacity to attach to the amniotic membrane and express CK3, CK19, Pan-Cadherin and E-Cadherin without induction with SHEM media and expressed CK12 or changed the expression pattern of E-Cadherin to a punctual-like feature when treated with SHEM media. The results observed in this study show that hOMSCs possess the potential to differentiate toward epithelial cells. In conclusion, our results revealed that hOMSCs readily express markers for corneal determination and could provide the ophthalmology field with a therapeutic alternative for tissue engineering to achieve corneal replacement when compared with other techniques. Nevertheless, further studies are needed to develop a predictable therapeutic alternative for cornea replacement.


Assuntos
Diferenciação Celular/genética , Epitélio Corneano/crescimento & desenvolvimento , Células-Tronco Mesenquimais/citologia , Mucosa Bucal/crescimento & desenvolvimento , Âmnio/crescimento & desenvolvimento , Células Cultivadas , Córnea/citologia , Córnea/crescimento & desenvolvimento , Córnea/metabolismo , Meios de Cultura/farmacologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio Corneano/citologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Mucosa Bucal/citologia , Engenharia Tecidual/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...